MATHS ASSAIGNMENT STD XI

CHAPTER 11. STRAIGHT LINES

General direction for the students:-Whatever be the notes provided, everything must be copied in the Maths Copy and then do the Home work in the same Copy.

Distance formula:

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ are any two points in a plane, then the distance

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Section formula

i) Internal division

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ are any two points in a plane and P(x, y) divides AB in the ratio

$$m: n \ internally$$
 , then $x = \frac{mx_2 + nx_1}{m+n}$, $y = \frac{my_2 + ny_1}{m+n}$.

ii) External division

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ are any two points in a plane and P(x, y) divides AB in the ratio

$$m: n \ externally$$
 , then $x = \frac{mx_2 - nx_1}{m - n}$, $y = \frac{my_2 - ny_1}{m - n}$.

Centroid of a Triangle

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle, then co-ordinate of centroid is $x = \frac{x_1 + x_2 + x_3}{3}$, $y = \frac{y_1 + y_2 + y_3}{3}$.

Incentre of a triangle

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle and the

 $sides\ BC=a$, AB=c , $\ AC=b$. Then co-ordinate of incentre is is

$$x = \frac{ax_1 + bx_2 + cx_3}{a+b+c}$$
, $y = \frac{ay_1 + by_2 + cy_3}{a+b+c}$.

Area of a triangle

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle, then

then area of triangle ABC =
$$\frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

Collinearity of three points

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are three points in a plane and they are collinear if and only if $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$.

Steps of finding Equation of Locus

- Step 1. Assume the moving point be (x, y).
- Step 2. Apply the condition.
- Step 3. Simplifly the above relation.

Results

- General point on X-axis is (x, 0).
- General point on Y-axis is (0, y).
- X co-ordinate is also known as Abscissa.
- Y co-ordinate is also known as Ordinate.
- If AD is the angle bisector of the angle A of a triangle ABC and D is a point on BC. Then $\frac{BD}{DC} = \frac{AB}{AC}$.
- Centroid of $\triangle ABC$ and $\triangle PQR$ are same , if P , Q and R are the midpoints of sides of the $\triangle ABC$.